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Abstract.	 Evidence for the existence of 5-minute oscillations it the
photospheric and low chromospheric magnetic fields is presented, their

properties di ;cussed, and a possible production mechanism suggested.

For about a decade it has been known that there are velocity oscil-

lations in the photosphere and low chromosphere with periods of about

5 minutes (Leighton et al., 1962). These oscillations have also been

detected in the brightness, both in the wings of lines, and in the continuiun.

A logical question which follows from this is whether or not. these

oscillations are present in the magnetic field as well. In this paper we

report the answer as- yes, they are there, but are often well hidden by

the noise.

In 1967, Severny reported seeing oscillations in the magnetic field,

but these were of periods seven to nine minutes rather than five minutes,

and somewhat irregular.
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The simplest way to look for oscillations in the magnetic field is

to use the solar magnetograph to observe a single point on the sun for

several hours, scanning westward very slowly to compensate for solar

rotation. The raw data for this type of observation consists of the

velocity as a functioi. of time, the magnetic field as a function of time,

and the brightness as a function of time. In Figure 1 the velocity and

magnetic field are shown for one 3-hour observation of this type. All

the observations discussed in this paper are of this ' a non-scanning" type.

The velocity curve of Figure 1 shows the 5-minute oscillations are

sometimes present and sometimes not present, as usual. Although the

magnetic signal is very Noisy, if one looks carefully one can see numerous

cycles where the maximum in velocity coincides with the maximum in field,

and where the minimum in velocity coincides with the minimum in field.

Figure 2 is an autocorrelation of the magnetic field for four

.separate observations of the type just described. The four runs were

scattered over a period of two years. Each of the observations was for

an interval of about three hours. The top one is for the data of Figure 1.

Two are for the photospheric line Fe I 5250 and two for the low chromo-

spheric line Mg 1 5173. The maximum for the two iron runs occurs at jus:

over 5 minutes, while the ine-ximum for the magnesium runs is about forty

seconds less. This is consistent with the well known fact that the period

decreases somewhat with height (Noyes and Leighton, 1963).

Figure 3 shows a cross correlation between the magnetic field and

velocity for several spectral lines. Note that all the curves are oscil-

latory in character for several cycles. This means that both the velocity

and magnetic field have the oscillations because the cross correlation of

a sine wave (velocity) with random noise (magnetic field) is essentially
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constant at zero. If one curve is random noise, it does not matter how

much you shift it with respect to the other one, the correlation is the

same.

Note that the fourth curve has an anticorrelation at zero lag.

This is just due to the fact that if the sign of the field is reversed,

the sign of the correlation coefficient will reverse, but of course the

physical interpretation is the same. In other words, in a region of

positive field the correlation coefficient is positive when the velocity

and field are in phase, but in a negative field region there is an anti-

correlation if they are in phase.

Mother approach to digging the magnetic field oscillations out of the

noise is to use a superposed epoch analysis. First the velocity and

magnetic field are plotted as functions of time. Then the starting time

of the individual velocity oscillations are determined. Then, conceptually

at least, the individual velocity oscillations are cut out and pasted

vertically below one another. The same thing is done for the magnetic

field (or brightness) but with the starting times determined frc,:u the

velocity observations. In Figures 4 and 5 the first colimin is velocity,

the middle column is magnetic field, and the last column is brightness.

One thing that is immediately obvious is that the magnetic signal is

very noisy.

The top magnetic curve corresponds to the same time interval as the

top velocity curve. The second magnetic curve corresponds to the same

time interval as the second velocity curve, etc. At the bottom of the

first column is the average velocity oscillation. Next to it i . the

average magnetic field during a velocity oscillation. Next to that is

the average brightness during a velocity oscillation. The magrc t ic signal
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is still rather noisy, not surprising considering what went in to it,

so a 30-second running mean was computed and is displayed at the bottom of

each column. }sere the 5-minute oscillation in the magnetic field shows

up quite clearly. Remember that the time intervals were chosen so as to

line up the velocity curves in phase; the fact that the oscillation comes

through in the field means that there is a definite phase relation between

the two.

Figure 6 is a summary of four superposed epoch analyses. The example

in the lower left hand corner looks like it is out of phase with the others,

but that is just because it is in a region whose field polarity is oppozi e

to those of the other three examples, so it is really not shifted by 1800.

The graph in the lower right hand corner seems to have the magnetic phase

advanced somewhat. This is for the magnesium line. The brightness oscil-

lations in the chromospheric lines are advanced with respect to the photo-

spheric lines, so this may be related in some way.

The observational results may be Siunmarized as follows:

1. Using three techniques (namely, looking at the raw data, correlation

analysis, and superposed epoch analysis) the existence of periodic

oscillations in the sun's magnetic field has been demonstrated.

2. The periods are the same order as the velocity periods, about 5 minutes.

3. The magnetic oscillations have a definite phase relation with the

velocity oscillations.

4. They exist at least over the range in height covered by the lines

Fe I 5250 to Mg I 5173.

5. The amplitude is around one or two gauss; consequently they can be

easily masked by noise.



6. They occur both in regions of weak field (< 5 gauss) and in reg=.ons

of strong field (A80 gauss).

Now that it has been established that the 5-minute oscillations exist

in the magnetic field, the question of what causes them arises. One pos-

sibility is same instrumental artifact. Inasmuch as the oscillations are

present in both the velocity and the brightness they might be feeding

through into the magnetic field observations.

First consider the brightness. The brightness oscillations in the

photosphere consist of a 1^ variation in the average light level, so it

is a very small effect. The magnetograph does not actually record the

magnetic signal, but rather the Zeeman signal, which is proportional to

the product of the magnetic field and the brightness. To get the mag-

netic field, a computer prograrr. divides each Zeeman reading by the

instantaneous value of the brightness, so the oscillations in the bright-

ness cancel out exactly. As a check, an autocorrelation was made both

with and without this brightness compensation. Figure 7 shows the

5-minute peak present in both cases.

Now consider the velocity. It is true that the spectral line is

moving back and forth with a period of five minutes, but the magnetic

signal is ac coupled to the velocity; it depends only upon changes in

the line profile occurring at the KDP frequency, which is 18,000 times

higher than the Frequency of the velocity oscillations. In addition,

it is hard to explain how an instrumental effect would appear both in

the weak field case where the Zeeman signal changes sign, and in the strong

field case where it does not. Furthermore, if it really were an instru-

mental effect, the phase shift between velocity and field ou ght to be
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constant, whereas in Figure 6 one of the examples has an appreciably

different phase shift from the others.

If it is not an instrumental effect, it must be of solar crigin.

Because the solar magnetic field is frozen into the oscillating plasma,

there are several ways in which the oscillations in the plasma (which

are observed as velocity oscillations) could be transferred to the mag-

netic field. Figure 8 shows schematically how vertical waves could cause

')scillations in a horizontal magnetic field, and how horizontal waves

could cause iscillations in a vertical magnetic field.
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Figure Captions

Figure 1.	 Plot of velocity and magnetic field as a function of time

for an observation in which the aperture was fixed on a single point on

the sun, moving slowly westward across the disk to compensate for solar

rotation. Tree oscillations in the magnetic field can be seen here.

Figure 2.	 Autocorrelation of magnetic field for four separate

observations. The horizontal line passing through each curve re:.:e-

sents a correlation of 0. The lines above and below represent +1.0

and -1.0 respectively.

Figure 3.	 Cross correlation of velocity and magnetic field. Same

scale as Figure 2.

Figure 4.	 Superposed epoch analysis of an observation of the tyFe

shown in Figure 1. The curves labeled "average 
it 
represent the average

of all the curves above them, alth^iigii at a different scale. The

filtered average is a 30-second n.vining mean of the average to remove

high frequency noise.

Figure 5.	 Same as Figure 4, but for different observations.

Figure 6.	 Four examples of mean magnetic field oscillation profiles

during a velocity oscillation as deduced from superposed e poch analysis.



Figure 7.	 Upper curve is autocorrelation of magnetic field as normally

computed (Zeeman signal divided by brightness signed). Lower curve is for

same data but without compensatic for brightness variations, i.e. just

the Zeeman signal. The similarity of the two curves shows that the

5-minute oscillations in the magnetic field is not a feed through of the

brightness oscillation.

Figure 8.	 Schematic representation of how oscillations in the solar

plasma could be transferred to the lire-of-sight magnetic fJ.eld. If the

W,ne.ograph aperture coincided with aiiy of the small squares, the mag-

netic field would {how an oscillatory character. In ;he top example,

the magnetic field oscillations wound have an average of zero gauss;

in the bottom example, the average would be non-zero.
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